Cronica

Mundo completo de noticias

El LED ultravioleta lejano mata bacterias y virus de manera eficiente sin dañar a las personas
Ciencias

El LED ultravioleta lejano mata bacterias y virus de manera eficiente sin dañar a las personas

Figura 1: La mayoría de los LED emiten luz visible, pero los físicos de RIKEN crearon un LED que emite en una región estrecha en el ultravioleta lejano que es seguro para los humanos pero mortal para los virus y las bacterias. crédito: RIKEN

Un potente LED puede desinfectar eficazmente las superficies y mantenerlas seguras para las personas.

Los físicos de RIKEN diseñaron un LED altamente eficiente que es mortal para los microbios y los virus, pero seguro para los humanos. Algún día, podría ayudar a los países a salir de las sombras de las pandemias, matando patógenos en salas llenas de gente.

Las lámparas germicidas ultravioleta son extremadamente efectivas para matar bacterias y virus. De hecho, se utilizan habitualmente en hospitales para esterilizar superficies e instrumentos médicos.

masafumi-jo

Masafumi Jo y dos compañeros de trabajo diseñaron un LED que ayudará a proteger a la sociedad de las pandemias. crédito: RIKEN

Las lámparas de este tipo se pueden construir con LED, lo que las hace eficientes energéticamente. Sin embargo, estos LED producen luz ultravioleta en un rango que daña[{» attribute=»»>DNA and therefore cannot be used around people. The search is on to develop efficient LEDs that shine light within a narrow band of far-ultraviolet light that appears to be both good at disinfecting while remaining safe for people.

Germicidal LED lamps that operate in the absence of humans are often made from aluminum, gallium, and nitrogen. By increasing the amount of aluminum they contain, these LEDs can be modified to work in a wavelength region that is safe for humans. This approach has been used before but has resulted in dramatically reduced power.

READ  Usando la órbita de la luna como un nuevo y poderoso detector de ondas gravitacionales

To work through this issue, three physicists at RIKEN Quantum Optodevice Laboratory, Masafumi Jo, Yuri Itokazu, and Hideki Hirayama, created an LED with a more complex design. They sandwiched together multiple layers, each containing slightly different proportions of aluminum. In addition, in some layers they also added tiny amounts of silicon or magnesium.

This effectively created an obstacle course for electrons, hindering their movement across the material and trapping them for longer in certain areas. This resulted in an increased amount of light emitted by the device and a reduced amount absorbed by it.

The team used computer simulations to model all possible effects to help pin down the ideal design. “We then grew samples to see if it was effective or not,” Jo says. Precisely controlling the thickness of each layer was the biggest experimental challenge. They ended up with an LED operating in the far ultraviolet, with an output power almost ten times higher than their previous best.

The COVID-19 pandemic brought a new consciousness of the importance of being able to eradicate viruses and microbes on surfaces. “We trust that our findings and technologies will be very useful for safeguarding society against this and future pandemics,” says Jo.

Jo adds that the trio will strive to improve their LED’s performance even further. “There’s still much room for improvement in the output power and the power efficiency,” he notes.

Reference: “Milliwatt-power far-UVC AlGaN LEDs on sapphire substrates” by Masafumi Jo, Yuri Itokazu and Hideki Hirayama, 25 May 2022, Applied Physics Letters.
DOI: 10.1063/5.0088454

READ  Misterioso 'gen dentro de un gen' encontrado en SARS-CoV-2

DEJA UNA RESPUESTA

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

"Creador malvado. Estudiante. Jugador apasionado. Nerd incondicional de las redes sociales. Adicto a la música".